A study of generalized hypergeometric Matrix functions via two-parameter Mittag–Leffler matrix function
The main aim of this article is to study a new generalizations of the Gauss hypergeometric matrix and confluent hypergeometric matrix functions by using two-parameter Mittag–Leffler matrix function. In particular, we investigate certain important properties of these extended matrix functions such as...
Gespeichert in:
Veröffentlicht in: | Open Physics 2022-08, Vol.20 (1), p.730-739 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main aim of this article is to study a new generalizations of the Gauss hypergeometric matrix and confluent hypergeometric matrix functions by using two-parameter Mittag–Leffler matrix function. In particular, we investigate certain important properties of these extended matrix functions such as integral representations, differentiation formulas, beta matrix transform, and Laplace transform. Furthermore, we introduce an extension of the Jacobi matrix orthogonal polynomial by using our generalized Gauss hypergeometric matrix function, which is very important in scattering theory and inverse scattering theory. |
---|---|
ISSN: | 2391-5471 2391-5471 |
DOI: | 10.1515/phys-2022-0068 |