Homeostatic microglia initially seed and activated microglia later reshape amyloid plaques in Alzheimer’s Disease

The role of microglia in the amyloid cascade of Alzheimer’s disease (AD) is debated due to conflicting findings. Using a genetic and a pharmacological approach we demonstrate that depletion of microglia before amyloid-β (Aβ) plaque deposition, leads to a reduction in plaque numbers and neuritic dyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-12, Vol.15 (1), p.10634-14, Article 10634
Hauptverfasser: Baligács, Nóra, Albertini, Giulia, Borrie, Sarah C., Serneels, Lutgarde, Pridans, Clare, Balusu, Sriram, De Strooper, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of microglia in the amyloid cascade of Alzheimer’s disease (AD) is debated due to conflicting findings. Using a genetic and a pharmacological approach we demonstrate that depletion of microglia before amyloid-β (Aβ) plaque deposition, leads to a reduction in plaque numbers and neuritic dystrophy, confirming their role in plaque initiation. Transplanting human microglia restores Aβ plaque formation. While microglia depletion reduces insoluble Aβ levels, soluble Aβ concentrations stay consistent, challenging the view that microglia clear Aβ. In later stages, microglial depletion decreases plaque compaction and increases neuritic dystrophy, suggesting a protective role. Human microglia with the TREM2 R47H/R47H mutation exacerbate plaque pathology, emphasizing the importance of non-reactive microglia in the initiation of the amyloid cascade. Adaptive immune depletion ( Rag2 -/- ) does not affect microglia’s impact on plaque formation. These findings clarify conflicting reports, identifying microglia as key drivers of amyloid pathology, and raise questions about optimal therapeutic strategies for AD. The role of microglia in Alzheimer’s disease is debated. This paper shows that homeostatic microglia seed amyloid plaques in early disease stages and activated microglia compact plaques at later stages, clarifying previous contradictory findings.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-54779-w