Determining When an Algebra Is an Evolution Algebra
Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper, we obtain necessary and sufficient conditions for a given algebra A to be an evolution algebra. We prove that the problem is equivalent to the s...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-08, Vol.8 (8), p.1349 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper, we obtain necessary and sufficient conditions for a given algebra A to be an evolution algebra. We prove that the problem is equivalent to the so-called SDC problem, that is, the simultaneous diagonalisation via congruence of a given set of matrices. More precisely we show that an n-dimensional algebra A is an evolution algebra if and only if a certain set of n symmetric n×n matrices {M1,…,Mn} describing the product of A are SDC. We apply this characterisation to show that while certain classical genetic algebras (representing Mendelian and auto-tetraploid inheritance) are not themselves evolution algebras, arbitrarily small perturbations of these are evolution algebras. This is intringuing, as evolution algebras model asexual reproduction, unlike the classical ones. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8081349 |