Predicting Shear Strength in FRP-Reinforced Concrete Beams Using Bat Algorithm-Based Artificial Neural Network

In this article, 140 samples with different characteristics were collected from the literature. The Feed Forward network is used in this research. The parameters f’c (MPa), ρf (%), Ef (GPa), a/d, bw (mm), d (mm), and VMA are selected as inputs to determine the shear strength in FRP-reinforced concre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science and engineering 2021, Vol.2021 (1)
Hauptverfasser: Nikoo, Mohammad, Aminnejad, Babak, Lork, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, 140 samples with different characteristics were collected from the literature. The Feed Forward network is used in this research. The parameters f’c (MPa), ρf (%), Ef (GPa), a/d, bw (mm), d (mm), and VMA are selected as inputs to determine the shear strength in FRP-reinforced concrete beams. The structure of the artificial neural network (ANN) is also optimized using the bat algorithm. ANN is also compared to the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. Finally, Nehdi et al.’s model, ACI-440, and BISE-99 equations were used to evaluate the models’ accuracy. The results confirm that the bat algorithm-optimized ANN is more capable, flexible, and provides superior precision than the other three models in determining the shear strength of the FRP-reinforced concrete beams.
ISSN:1687-8434
1687-8442
DOI:10.1155/2021/5899356