Sweep Pulse Excitation Method for Enhancing Photoacoustic Elastic Waves at Different Laser Irradiation Parameters

Laser remote sensing using a sweep pulse excitation method, in which a laser beam is irradiated at the same repetition frequency as the natural frequency, for enhancing photoacoustic elastic waves through resonance effect has been studied. The sweep pulse excitation method, which is based on the pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (13), p.5025
Hauptverfasser: Mikami, Katsuhiro, Sudo, Natsumi, Okamoto, Yuka, Nagura, Takeo, Nakashima, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser remote sensing using a sweep pulse excitation method, in which a laser beam is irradiated at the same repetition frequency as the natural frequency, for enhancing photoacoustic elastic waves through resonance effect has been studied. The sweep pulse excitation method, which is based on the principle of detecting natural frequency fluctuations, such as hammering tests, can detect natural frequencies in the audible sound region with low average laser power and contribute to the convenience and low cost of an installation strength diagnosis of fastening bolts. In this study, we investigated the dynamics of the swept excitation method for optimization by evaluating the dependence of the laser irradiation conditions (pulse width, spot size, and average power) on different metal disc samples. We discovered that the magnitude of the photoacoustic elastic wave is proportional to the absorption of laser power, and the spatiotemporal dynamics can be explained through thermal diffusion phenomena. These findings contribute to the development of laser-sensing technology based on photoacoustic elastic waves.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22135025