RAPOPORT–ZINK SPACES OF HODGE TYPE
When $p>2$ , we construct a Hodge-type analogue of Rapoport–Zink spaces under the unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-isogeny) of $p$ -divisible groups with certain crystalline Tate tensors. We also define natural rigid analytic towers with expec...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2018, Vol.6, Article e8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When
$p>2$
, we construct a Hodge-type analogue of Rapoport–Zink spaces under the unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-isogeny) of
$p$
-divisible groups with certain crystalline Tate tensors. We also define natural rigid analytic towers with expected extra structure, providing more examples of ‘local Shimura varieties’ conjectured by Rapoport and Viehmann. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2018.6 |