Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling

Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-02, Vol.11 (1), p.1039-1039, Article 1039
Hauptverfasser: Ma, Guolin, He, Lian, Liu, Shuzhong, Xie, Jiansheng, Huang, Zixian, Jing, Ji, Lee, Yi-Tsang, Wang, Rui, Luo, Hesheng, Han, Weidong, Huang, Yun, Zhou, Yubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of various blue light-responsive photoreceptors into modular domains of the stromal interaction molecule 1 (STIM1) to manipulate protein activity and faithfully recapitulate STIM1-mediated signaling events. Capitalizing on these optogenetic tools, we identify the molecular determinants required to mediate protein oligomerization, intramolecular conformational switch, and protein-target interactions. In parallel, we have applied these synthetic devices to enable light-inducible gating of calcium channels, conformational switch, dynamic protein-microtubule interactions and assembly of membrane contact sites in a reversible manner. Our optogenetic engineering approach can be broadly applied to aid the mechanistic dissection of cell signaling, as well as non-invasive interrogation of physiological processes with high precision. Optogenetic tools have been used to control cellular behaviours but their use to probe structure-function relations of signalling proteins are underexplored. Here the authors engineer optogenetic modules into STIM1 to dissect molecular details of STIM1-mediated signalling and control various cellular events.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14841-9