Deep Activation Pooling for Blind Image Quality Assessment

Driven by the rapid development of digital imaging and network technologies, the opinion-unaware blind image quality assessment (BIQA) method has become an important yet very challenging task. In this paper, we design an effective novel scheme for opinion-unaware BIQA. We first utilize the convoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2018-04, Vol.8 (4), p.478
Hauptverfasser: Zhang, Zhong, Wang, Hong, Liu, Shuang, Durrani, Tariq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Driven by the rapid development of digital imaging and network technologies, the opinion-unaware blind image quality assessment (BIQA) method has become an important yet very challenging task. In this paper, we design an effective novel scheme for opinion-unaware BIQA. We first utilize the convolutional maps to select high-contrast patches, and then we utilize these selected patches of pristine images to train a pristine multivariate Gaussian (PMVG) model. In the test stage, each high-contrast patch is fitted by a test MVG (TMVG) model, and the local quality score is obtained by comparing with the PMVG. Finally, we propose the deep activation pooling (DAP) to automatically emphasize the more important scores and suppress the less important ones so as to obtain the overall image quality score. We verify the proposed method on two widely used databases, that is, the computational and subjective image quality (CSIQ) and the laboratory for image and video engineering (LIVE) databases, and the experimental results demonstrate that the proposed method achieves better results than the state-of-the-art methods.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8040478