Pointwise coapproximinality in \(L^p(\mu, X)\)

Let \(X\) be a Banach space, \(G\) be a closed subspace of \(X\), \((\Omega,\Sigma,\mu)\) be a \(\sigma\)-finite measure space, \(L(\mu,X)\) be the space of all strongly measurable functions from \(\Omega\) to \(X\), and \(L^{p}(\mu,X)\) be the space of all Bochner \(p-\)integrable functions from \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of numerical analysis and approximation theory 2023-07
1. Verfasser: Eyad Abu-Sirhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(X\) be a Banach space, \(G\) be a closed subspace of \(X\), \((\Omega,\Sigma,\mu)\) be a \(\sigma\)-finite measure space, \(L(\mu,X)\) be the space of all strongly measurable functions from \(\Omega\) to \(X\), and \(L^{p}(\mu,X)\) be the space of all Bochner \(p-\)integrable functions from \(\Omega\) to \(X\). Discussing the relationship between the pointwise coproximinality of \(L(\mu, G)\) in \(L(\mu, X)\) and the pointwise coproximinality of \(L^{p}(\mu, G)\) in \(L^{p}(\mu, X)\) is the purpose of this paper.
ISSN:2457-6794
2501-059X
DOI:10.33993/jnaat521-1328