A Machine Learning Approach for Movement Monitoring in Clustered Workplaces to Control COVID-19 Based on Geofencing and Fusion of Wi-Fi and Magnetic Field Metrics

The ubiquitous existence of COVID-19 has required the management of congested areas such as workplaces. As a result, the use of a variety of inspiring tools to deal with the spread of COVID-19 has been required, including internet of things, artificial intelligence (AI), machine learning (ML), and g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (15), p.5643
Hauptverfasser: Abd El-Haleem, Ahmed M, Mohamed, Noor El-Deen M, Abdelhakam, Mostafa M, Elmesalawy, Mahmoud M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ubiquitous existence of COVID-19 has required the management of congested areas such as workplaces. As a result, the use of a variety of inspiring tools to deal with the spread of COVID-19 has been required, including internet of things, artificial intelligence (AI), machine learning (ML), and geofencing technologies. In this work, an efficient approach based on the use of ML and geofencing technology is proposed to monitor and control the density of persons in workplaces during working hours. In particular, the workplace environment is divided into a number of geofences in which each person is associated with a set of geofences that make up their own cluster using a dynamic user-centric clustering scheme. Different metrics are used to generate a unique geofence digital signature (GDS) such as Wi-Fi basic service set identifier, Wi-Fi received signal strength indication, and magnetic field data, which can be collected using the person's smartphone. Then, these metrics are utilized by different ML techniques to generate the GDS for each indoor geofence and each building geofence as well as to detect whether the person is in their cluster. In addition, a Layered-Architecture Geofence Division method is considered to reduce the processing overhead at the person's smartphone. Our experimental results demonstrate that the proposed approach can perform well in a real workplace environment. The results show that the system accuracy is about 98.25% in indoor geofences and 76% in building geofences.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22155643