Radiological Outcome Measures Indicate Advantages of Precontoured Locking Compression Plates in Elderly Patients With Split-Depression Fractures to the Lateral Tibial Plateau (AO41B3)
Background Split-depression fractures to the lateral tibial plateau (AO41B3) often feature severe joint surface destructions. Precontoured locking compression plates (LCPs) are designed for optimum support of the reduced joint surface and have especially been emphasized in reduced bone quality. A la...
Gespeichert in:
Veröffentlicht in: | Geriatric orthopaedic surgery & rehabilitation 2021, Vol.12, p.21514593211043967-21514593211043967 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Split-depression fractures to the lateral tibial plateau (AO41B3) often feature severe joint surface destructions. Precontoured locking compression plates (LCPs) are designed for optimum support of the reduced joint surface and have especially been emphasized in reduced bone quality. A lack of evidence still inhibits their broad utilization in elderly patients. Thus, aim of the present study was to investigate the implant-specific radiological outcomes of AO41B3-fractures in young versus elderly patients.
Methods
The hospital’s database was screened for isolated AO41B3-factures, open reduction and internal fixation (ORIF), and radiological follow-up ≥12 months. CT-scans, radiographs, and patients’ records were analyzed. Patients were attributed as young (18–49) or elderly (≥50 years). Additional subgrouping was carried out into precontoured LCP and conventional implants. The Rasmussen Radiological Score (RRS) after 12 months was set as primary outcome parameter. The RRS postoperatively and the medial proximal tibial angle (MPTA) postoperatively and after 12 months were secondary outcome parameters.
Results
Fifty nine consecutive patients were included (26 young, 38.2 ± 7.8 years; 33 elderly, 61.3 ± 9.4 years). There were no significant differences regarding mean size and depression depth of the lateral joint surface fragments. Prior to implant-specific subgrouping, the radiological outcome measures revealed no significant differences between young (RRS = 7.7 ± 1.7; MPTA = 90.3 ± 2.3°) and elderly (RRS = 7.2 ± 1.7; MPTA = 90.5 ± 3.3°). After implant-specific subgrouping, the radiological outcome revealed significantly impaired results in young patients with conventional implants (RRS(C) = 6.9 ± 1.6, RRS(LCP) = 8.5 ± 1.5, P = .015; MPTA(C) = 91.5 ± 1.9°, MPTA(LCP) = 89.1 ± 2.1°, P = .01). The effect was even more pronounced in elderly patients, with highly significant deterioration of the radiological outcome measures for conventional implants compared to precontoured LCP (RRS(C) = 5.7 ± 1.6, RRS(LCP) = 8.2 ± .8, P < .001; MPTA(C) = 92.6 ± 4.2°, MPTA(LCP) = 89.2 ± 1.4°, P = .002).
Conclusion
Utilizing precontoured LCP in the treatment of AO41B3-fractures is associated with improved radiological outcomes. This effect is significant in young but even more pronounced in elderly patients. Consequently, precontoured LCP should closely be considered in any AO41B3-fracture, but especially in elderly patients. |
---|---|
ISSN: | 2151-4593 2151-4585 2151-4593 |
DOI: | 10.1177/21514593211043967 |