A predictive signal model for dynamic cardiac magnetic resonance imaging

Robust dynamic cardiac magnetic resonance imaging (MRI) has been a long-standing endeavor—as real-time imaging can provide information on the temporal signatures of disease we currently cannot assess—with the past decade seeing remarkable advances in acceleration using compressed sensing (CS) and ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-06, Vol.13 (1), p.10296-10296, Article 10296
Hauptverfasser: Curtis, Aaron D., Mertens, Alexander J., Cheng, Hai-Ling Margaret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Robust dynamic cardiac magnetic resonance imaging (MRI) has been a long-standing endeavor—as real-time imaging can provide information on the temporal signatures of disease we currently cannot assess—with the past decade seeing remarkable advances in acceleration using compressed sensing (CS) and artificial intelligence (AI). However, substantial limitations to real-time imaging remain and reconstruction quality is not always guaranteed. To improve reconstruction fidelity in dynamic cardiac MRI, we propose a novel predictive signal model that uses a priori statistics to adaptively predict temporal cardiac dynamics. By using a small training set obtained from the same patient, the new signal model can achieve robust dynamic cardiac MRI in the presence of irregular cardiac rhythm. Evaluation on simulated irregular cardiac dynamics and prospectively undersampled clinical cardiac MRI data demonstrate improved reconstruction quality for two reconstruction frameworks: Kalman filter and CS. The predictive model also works with different undersampling patterns (cartesian, radial, spiral) and can serve as a versatile foundation for robust dynamic cardiac MRI.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-37475-5