Asymmetric Loss Functions and Sample Size Determination: A Bayesian Approach

In designing monitoring systems for public health tasks it can be important to give different weights to the cases of under- and overestimation of a binomial parameter. We show how asymmetric loss functions can be used for this aim. Bayesian interval-based approaches can be combined with these loss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Österreichische Zeitschrift für Statistik 2016-04, Vol.35 (1)
1. Verfasser: Stüger, Hans Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In designing monitoring systems for public health tasks it can be important to give different weights to the cases of under- and overestimation of a binomial parameter. We show how asymmetric loss functions can be used for this aim. Bayesian interval-based approaches can be combined with these loss functions and with prior knowledge about diagnostic classification errors to determine optimal sample sizes.
ISSN:1026-597X
DOI:10.17713/ajs.v35i1.348