Numerical Modeling of Fractional-Order Biological Systems
We provide a class of fractional-order differential models of biological systems with memory, such as dynamics of tumor-immune system and dynamics of HIV infection of CD4+ T cells. Stability and nonstability conditions for disease-free equilibrium and positive equilibria are obtained in terms of a t...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.112-122-1111 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a class of fractional-order differential models of biological systems with memory, such as dynamics of tumor-immune system and dynamics of HIV infection of CD4+ T cells. Stability and nonstability conditions for disease-free equilibrium and positive equilibria are obtained in terms of a threshold parameter ℛ0 (minimum infection parameter) for each model. We provide unconditionally stable method, using the Caputo fractional derivative of order α and implicit Euler’s approximation, to find a numerical solution of the resulting systems. The numerical simulations confirm the advantages of the numerical technique and using fractional-order differential models in biological systems over the differential equations with integer order. The results may give insight to infectious disease specialists. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2013/816803 |