Numerical Modeling of Fractional-Order Biological Systems

We provide a class of fractional-order differential models of biological systems with memory, such as dynamics of tumor-immune system and dynamics of HIV infection of CD4+ T cells. Stability and nonstability conditions for disease-free equilibrium and positive equilibria are obtained in terms of a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.112-122-1111
1. Verfasser: Rihan, Fathalla A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a class of fractional-order differential models of biological systems with memory, such as dynamics of tumor-immune system and dynamics of HIV infection of CD4+ T cells. Stability and nonstability conditions for disease-free equilibrium and positive equilibria are obtained in terms of a threshold parameter ℛ0 (minimum infection parameter) for each model. We provide unconditionally stable method, using the Caputo fractional derivative of order α and implicit Euler’s approximation, to find a numerical solution of the resulting systems. The numerical simulations confirm the advantages of the numerical technique and using fractional-order differential models in biological systems over the differential equations with integer order. The results may give insight to infectious disease specialists.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/816803