A Detailed Review of Partial Discharge Detection Methods for SiC Power Modules Under Square-Wave Voltage Excitation

Silicon carbide (SiC) power modules are increasingly being used in high-voltage and high-frequency applications due to their superior electrical and thermal qualities. However, the issue of the partial discharge (PD) phenomenon raises serious reliability difficulties resulting in insulation failure,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-11, Vol.17 (22), p.5793
Hauptverfasser: Akbar, Ghulam, Di Fatta, Alessio, Rizzo, Giuseppe, Ala, Guido, Romano, Pietro, Imburgia, Antonino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon carbide (SiC) power modules are increasingly being used in high-voltage and high-frequency applications due to their superior electrical and thermal qualities. However, the issue of the partial discharge (PD) phenomenon raises serious reliability difficulties resulting in insulation failure, performance degradation, and potential device collapse. This paper provides a thorough assessment of the current PD detection strategies in SiC power modules. The issues provided by SiC devices’ distinct operational features, such as high switching frequencies and higher voltage stresses, which hinder PD detection and mitigation, are widely investigated. This review compares the effectiveness, benefits, and limitations of various detection methods, emphasizing the need for better strategies to ensure long-term reliability and performance. This study gives an in-depth overview of the numerous forms of PD phenomena that occur in power modules, including internal and surface discharges, as well as how they appear under various detection systems. It examines the performance of several methods for power module technologies such as SiC. To address these PD issues, this article proposes ways to improve reliability and detection accuracy.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17225793