Chebyshev Wavelet Analysis

This paper deals with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due to the connection coefficients. Uniform convergence of Chebyshev wavelets and their approximation error allow us to prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2022, Vol.2022, p.1-17
Hauptverfasser: Guariglia, Emanuel, Guido, Rodrigo Capobianco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due to the connection coefficients. Uniform convergence of Chebyshev wavelets and their approximation error allow us to provide rigorous proofs. In particular, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry. Finally, we give two examples concerning the main properties proved.
ISSN:2314-8896
2314-8888
DOI:10.1155/2022/5542054