UAS Hyperspatial LiDAR Data Performance in Delineation and Classification across a Gradient of Wetland Types

Wetlands play a critical role in maintaining stable and productive ecosystems, and they continue to be at heightened risk from anthropogenic and natural degradation, especially along the rapidly developing Atlantic Coastal Plain of North America. As such, strategies to develop up-to-date and high-re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drones (Basel) 2022-10, Vol.6 (10), p.268
Hauptverfasser: Pricope, Narcisa Gabriela, Minei, Asami, Halls, Joanne Nancie, Chen, Cuixian, Wang, Yishi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wetlands play a critical role in maintaining stable and productive ecosystems, and they continue to be at heightened risk from anthropogenic and natural degradation, especially along the rapidly developing Atlantic Coastal Plain of North America. As such, strategies to develop up-to-date and high-resolution wetland inventories and classifications remain highly relevant in the context of accelerating sea-level rise and coastal changes. Historically, satellite and airborne remote sensing data along with traditional field-based methods have been used for wetland delineation, yet, more recently, the advent of Uncrewed Aerial Systems (UAS) platforms and sensors is opening new avenues of performing rapid and accurate wetland classifications. To test the relative advantages and limitations of UAS technologies for wetland mapping and classification, we developed wetland classification models using UAS-collected multispectral and UAS-collected light detection and ranging (LiDAR) data relative to airborne-derived LiDAR models of wetland types ranging from palustrine to estuarine. The models were parameterized through a pixel-based random forest algorithm to evaluate model performance systematically and establish variable importance for a suite of variables including topographic, hydrologic, and vegetation-based indices. Based on our experimental results, the average overall classification accuracy and kappa coefficients for the UAS LiDAR-derived models are 75.29% and 0.74, respectively, compared to 79.80% and 0.75 for the airborne LiDAR-derived models, with significant differences in the spatial representation of final wetland classes. The resulting classification maps for the UAS models capture more precise wetland delineations than those of airborne models when trained with ground reference data collected at the same time as the UAS flights. The similar accuracy between the airborne and UAS models suggest that the UAS LiDAR is comparable to the airborne LiDAR. However, given poor revisit time of the airborne surveys and the high spatial resolution and precision of the UAS data, UAS-collected LiDAR provides excellent complementary data to statewide airborne missions or for specific applications that require hyperspatial data. For more structurally complex wetland types (such as the palustrine scrub shrub), UAS hyperspatial LiDAR data performs better and is much more advantageous to use in delineation and classification models. The results of this study contribute t
ISSN:2504-446X
2504-446X
DOI:10.3390/drones6100268