Characterization of Interleukin-15-Transpresenting Dendritic Cells for Clinical Use

Personalized dendritic cell- (DC-) based vaccination has proven to be safe and effective as second-line therapy against various cancer types. In terms of overall survival, there is still room for improvement of DC-based therapies, including the development of more immunostimulatory DC vaccines. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Immunology Research 2017-01, Vol.2017 (2017), p.1-8
Hauptverfasser: Lion, E., Berneman, Zwi N., De Reu, H., Versteven, M., Smits, Evelien, Van den Bergh, J. M. J., Van Tendeloo, Viggo F. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Personalized dendritic cell- (DC-) based vaccination has proven to be safe and effective as second-line therapy against various cancer types. In terms of overall survival, there is still room for improvement of DC-based therapies, including the development of more immunostimulatory DC vaccines. In this context, we redesigned our currently clinically used DC vaccine generation protocol to enable transpresentation of interleukin- (IL-) 15 to IL-15Rβγ-expressing cells aiming at boosting the antitumor immune response. In this study, we demonstrate that upon electroporation with both IL-15 and IL-15Rα-encoding messenger RNA, mature DC become highly positive for surface IL-15, without influencing the expression of prototypic mature DC markers and with preservation of their cytokine-producing capacity and their migratory profile. Functionally, we show that IL-15-transpresenting DC are equal if not better inducers of T-cell proliferation and are superior in tumor antigen-specific T-cell activation compared with DC without IL-15 conditioning. In view of the clinical use of DC vaccines, we evidence with a time- and cost-effective manner that clinical grade DC can be safely engineered to transpresent IL-15, hereby gaining the ability to transfer the immune-stimulating IL-15 signal towards antitumor immune effector cells.
ISSN:2314-8861
2314-7156
DOI:10.1155/2017/1975902