Linking Cover Crop Residue Quality and Tillage System to CO2-C Emission, Soil C and N Stocks and Crop Yield Based on a Long-Term Experiment

Cover crops (CC), particularly legumes, are key to promote soil carbon (C) sequestration in no-tillage. Nevertheless, the mechanisms regulating this process need further elucidation within a broad comprehensive framework. Therefore, we investigated effects of CC quality: black oat (Avena strigosa Sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2020-12, Vol.10 (12), p.1848
Hauptverfasser: Leal, Otávio A., Amado, Telmo J. C., Fiorin, Jackson E., Keller, Cristiano, Reimche, Geovane B., Rice, Charles W., Nicoloso, Rodrigo S., Bortolotto, Rafael P., Schwalbert, Rai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cover crops (CC), particularly legumes, are key to promote soil carbon (C) sequestration in no-tillage. Nevertheless, the mechanisms regulating this process need further elucidation within a broad comprehensive framework. Therefore, we investigated effects of CC quality: black oat (Avena strigosa Schreb) (oat), common vetch (Vicia sativa L.) (vetch), and oat + vetch on carbon dioxide-C (CO2-C) emission (124 days) under conventional- (CT), minimum- (MT) and no-tillage (NT) plots from a long-term experiment in Southern Brazil. Half-life time (t1/2) of CC residues and the apparent C balance (ACB) were obtained for CT and NT. We linked our data to long-term (22 years) soil C and nitrogen (N) stocks and crop yield data of our experimental field. Compared to CT, NT increased t1/2 of oat, oat + vetch and vetch by 3.9-, 3.1- and 3-fold, respectively; reduced CO2-C emissions in oat, oat + vetch and vetch by 500, 600 and 642 kg ha−1, respectively; and increased the ACB (influx) in oat + vetch (195%) and vetch (207%). For vetch, CO2-C emission in MT was 77% greater than NT. Legume CC should be preferentially combined with NT to reduce CO2-C emissions and avoid a flush of N into the soil. The legume based-NT system showed the greatest soil C and N sequestration rates, which were significantly and positively related to soybean (Glycine max (L.) Merrill) and maize (Zea mays L.) yield. Soil C (0–90 cm depth) and N (0–100 cm depth) sequestration increments of 1 kg ha−1 corresponded to soybean yield increments of 1.2 and 7.4 kg ha−1, respectively.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy10121848