The Donnan potential revealed

Selective transport of solutes across a membrane is critical for many biological, water treatment and energy conversion and storage systems. When a charged membrane is equilibrated with an electrolyte, an unequal distribution of ions arises between phases, generating the so-called Donnan electrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.5880-5880, Article 5880
Hauptverfasser: Aydogan Gokturk, Pinar, Sujanani, Rahul, Qian, Jin, Wang, Ye, Katz, Lynn E., Freeman, Benny D., Crumlin, Ethan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selective transport of solutes across a membrane is critical for many biological, water treatment and energy conversion and storage systems. When a charged membrane is equilibrated with an electrolyte, an unequal distribution of ions arises between phases, generating the so-called Donnan electrical potential at the solution/membrane interface. The Donnan potential results in the partial exclusion of co-ion, providing the basis of permselectivity. Although there are well-established ways to indirectly estimate the Donnan potential, it has been widely reported that it cannot be measured directly. Here we report the first direct measurement of the Donnan potential of an ion exchange membrane equilibrated with salt solutions. Our results highlight the dependence of the Donnan potential on external salt concentration and counter-ion valence, and show a reasonable agreement with current theoretical models of IEMs, which incorporate ion activity coefficients. By directly measuring the Donnan potential, we eliminate ambiguities that arise from limitations inherent in current models. Donnan electrical potential is widely adopted to describe ion distribution between two solutions separated by a permeable membrane with implications for many chemical and biological systems. Aydogan Gokturk et al. directly measures this potential for the first time and compare the data with theoretical models.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33592-3