Exploring the mechanism of action of Vanda tessellata extract for the treatment of osteoarthritis through network pharmacology, molecular modelling and experimental assays
The present study employed a comprehensive approach of network pharmacology, molecular dynamic simulation and in-vitro assays to investigate the underlying mechanism of the anti-osteoarthritic potential of Vanda tessellata extract (VTE). Thirteen active compounds of VTE were retrieved from the liter...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-08, Vol.10 (16), p.e35971, Article e35971 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study employed a comprehensive approach of network pharmacology, molecular dynamic simulation and in-vitro assays to investigate the underlying mechanism of the anti-osteoarthritic potential of Vanda tessellata extract (VTE). Thirteen active compounds of VTE were retrieved from the literature and the IMPPAT database. All of these passed the drug likeness and oral bioavailability parameters. A total of 535 VTE targets and 2577 osteoarthritis related targets were obtained. The compound-target-disease network analysis revealed vanillin, daucosterol, gigantol and syringaldehyde as the core key components. Protein-protein interaction analysis revealed BCL2, FGF2, ICAM 1, MAPK1, MMP1, MMP2, MMP9, COX2, STAT3 and ESR1 as the hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed AGE-RAGE signalling pathway, HIF-1 signalling pathway and ESR signalling pathway as the major signalling pathway of VTE involved in treating osteoarthritis. Molecular docking analysis showed daucosterol and gigantol to have good binding affinity with BCL2, ESR1 and MMP9, and the results were further confirmed through molecular dynamics simulation analysis. The mechanism predicted by network pharmacology was validated in vitro on IL-1β-induced SW982 synovial cells. VTE did not show any cytotoxicity and inhibited the migration of SW982 cells. VTE inhibited the expression level of IL-6, IL-8, TNF-α, PGE-2, MMP-2 and MMP-9 in a dose-dependent manner. VTE inhibited nuclear translocation of NF- κβ and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signalling pathway. The results showed that VTE exerted an anti-osteoarthritic effect by a multi-target, multi-component and multi-signalling pathway approach.
[Display omitted] |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e35971 |