Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements

Arctic feedbacks accelerate climate change through carbon releases from thawing permafrost and higher solar absorption from reductions in the surface albedo, following loss of sea ice and land snow. Here, we include dynamic emulators of complex physical models in the integrated assessment model PAGE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-04, Vol.10 (1), p.1900-11, Article 1900
Hauptverfasser: Yumashev, Dmitry, Hope, Chris, Schaefer, Kevin, Riemann-Campe, Kathrin, Iglesias-Suarez, Fernando, Jafarov, Elchin, Burke, Eleanor J., Young, Paul J., Elshorbany, Yasin, Whiteman, Gail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arctic feedbacks accelerate climate change through carbon releases from thawing permafrost and higher solar absorption from reductions in the surface albedo, following loss of sea ice and land snow. Here, we include dynamic emulators of complex physical models in the integrated assessment model PAGE-ICE to explore nonlinear transitions in the Arctic feedbacks and their subsequent impacts on the global climate and economy under the Paris Agreement scenarios. The permafrost feedback is increasingly positive in warmer climates, while the albedo feedback weakens as the ice and snow melt. Combined, these two factors lead to significant increases in the mean discounted economic effect of climate change: +4.0% ($24.8 trillion) under the 1.5 °C scenario, +5.5% ($33.8 trillion) under the 2 °C scenario, and +4.8% ($66.9 trillion) under mitigation levels consistent with the current national pledges. Considering the nonlinear Arctic feedbacks makes the 1.5 °C target marginally more economically attractive than the 2 °C target, although both are statistically equivalent. Nonlinear transitions in permafrost carbon feedback and surface albedo feedback have largely been excluded from climate policy studies. Here the authors modelled the dynamics of the two nonlinear feedbacks and the associated uncertainty, and found an important contribution to warming which leads to additional economic losses from climate change.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09863-x