De-Signing Hamiltonians for Quantum Adiabatic Optimization

Quantum fluctuations driven by non-stoquastic Hamiltonians have been conjectured to be an important and perhaps essential missing ingredient for achieving a quantum advantage with adiabatic optimization. We introduce a transformation that maps every non-stoquastic adiabatic path ending in a classica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum (Vienna, Austria) Austria), 2020-09, Vol.4, p.334, Article 334
Hauptverfasser: Crosson, Elizabeth, Albash, Tameem, Hen, Itay, Young, A. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum fluctuations driven by non-stoquastic Hamiltonians have been conjectured to be an important and perhaps essential missing ingredient for achieving a quantum advantage with adiabatic optimization. We introduce a transformation that maps every non-stoquastic adiabatic path ending in a classical Hamiltonian to a corresponding stoquastic adiabatic path by appropriately adjusting the phase of each matrix entry in the computational basis. We compare the spectral gaps of these adiabatic paths and find both theoretically and numerically that the paths based on non-stoquastic Hamiltonians have generically smaller spectral gaps between the ground and first excited states, suggesting they are less useful than stoquastic Hamiltonians for quantum adiabatic optimization. These results apply to any adiabatic algorithm which interpolates to a final Hamiltonian that is diagonal in the computational basis.
ISSN:2521-327X
2521-327X
DOI:10.22331/q-2020-09-24-334