A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method
In this paper, we present a reliable algorithm to calculate positive solutions of homogeneous nonlinear boundary value problems (BVPs). The algorithm converts the nonlinear BVP to an equivalent nonlinear Fredholm– Volterra integral equation.We employ the multistage Adomian decomposition method for B...
Gespeichert in:
Veröffentlicht in: | Open Engineering (Warsaw) 2015-01, Vol.5 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a reliable algorithm
to calculate positive solutions of homogeneous nonlinear
boundary value problems (BVPs). The algorithm converts
the nonlinear BVP to an equivalent nonlinear Fredholm–
Volterra integral equation.We employ the multistage Adomian
decomposition method for BVPs on two or more
subintervals of the domain of validity, and then solve the
matching equation for the flux at the interior point, or interior
points, to determine the solution. Several numerical
examples are used to highlight the effectiveness of the proposed
scheme to interpolate the interior values of the solution
between boundary points. Furthermore we demonstrate
two novel techniques to accelerate the rate of convergence
of our decomposition series solutions by increasing
the number of subintervals and adjusting the lengths
of subintervals in the multistage Adomian decomposition
method for BVPs. |
---|---|
ISSN: | 2391-5439 2391-5439 |
DOI: | 10.1515/eng-2015-0007 |