Squaring the Circle and Cubing the Sphere: Circular and Spherical Copulas

Do there exist circular and spherical copulas in [Formula: see text]? That is, do there exist circularly symmetric distributions on the unit disk in [Formula: see text] and spherically symmetric distributions on the unit ball in [Formula: see text], d ≥ 3, whose one-dimensional marginal distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2011-08, Vol.3 (3), p.574-599
Hauptverfasser: Perlman, Michael D, Wellner, Jon A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Do there exist circular and spherical copulas in [Formula: see text]? That is, do there exist circularly symmetric distributions on the unit disk in [Formula: see text] and spherically symmetric distributions on the unit ball in [Formula: see text], d ≥ 3, whose one-dimensional marginal distributions are uniform? The answer is yes for d = 2 and 3, where the circular and spherical copulas are unique and can be determined explicitly, but no for d ≥ 4. A one-parameter family of elliptical bivariate copulas is obtained from the unique circular copula in [Formula: see text] by oblique coordinate transformations. Copulas obtained by a non-linear transformation of a uniform distribution on the unit ball in [Formula: see text] are also described, and determined explicitly for d = 2.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym3030574