Squaring the Circle and Cubing the Sphere: Circular and Spherical Copulas
Do there exist circular and spherical copulas in [Formula: see text]? That is, do there exist circularly symmetric distributions on the unit disk in [Formula: see text] and spherically symmetric distributions on the unit ball in [Formula: see text], d ≥ 3, whose one-dimensional marginal distribution...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2011-08, Vol.3 (3), p.574-599 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Do there exist circular and spherical copulas in [Formula: see text]? That is, do there exist circularly symmetric distributions on the unit disk in [Formula: see text] and spherically symmetric distributions on the unit ball in [Formula: see text], d ≥ 3, whose one-dimensional marginal distributions are uniform? The answer is yes for d = 2 and 3, where the circular and spherical copulas are unique and can be determined explicitly, but no for d ≥ 4. A one-parameter family of elliptical bivariate copulas is obtained from the unique circular copula in [Formula: see text] by oblique coordinate transformations. Copulas obtained by a non-linear transformation of a uniform distribution on the unit ball in [Formula: see text] are also described, and determined explicitly for d = 2. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym3030574 |