Fair Domination Number in Cactus Graphs
For ≥ 1, a -fair dominating set (or just FD-set) in a graph is a dominating set such that | ) ∩ | = for every vertex ∈ \ . The -fair domination number of , denoted by ), is the minimum cardinality of a FD-set. A fair dominating set, abbreviated FD-set, is a FD-set for some integer ≥ 1. The fair domi...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2019-01, Vol.39 (2), p.489-503 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For
≥ 1, a
-fair dominating set (or just
FD-set) in a graph
is a dominating set
such that |
) ∩
| =
for every vertex
∈
\
. The
-fair domination number of
, denoted by
), is the minimum cardinality of a
FD-set. A fair dominating set, abbreviated FD-set, is a
FD-set for some integer
≥ 1. The fair domination number, denoted by
), of
that is not the empty graph, is the minimum cardinality of an FD-set in
. In this paper, aiming to provide a particular answer to a problem posed in [Y. Caro, A. Hansberg and M.A. Henning,
, Discrete Math. 312 (2012) 2905–2914], we present a new upper bound for the fair domination number of a cactus graph, and characterize all cactus graphs
achieving equality in the upper bound of
). |
---|---|
ISSN: | 1234-3099 2083-5892 |
DOI: | 10.7151/dmgt.2088 |