Positive solutions of IBVPs for $ q $-difference equations with $ p $-Laplacian on infinite interval

Nowadays, many researches have considerable attention to the nonlinear q-difference equations boundary value problems as important and useful tool for modeling of different phenomena in various research fields. In this work, we investigate a class of q-difference equations boundary value problems wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2021-01, Vol.6 (8), p.8404-8414
Hauptverfasser: Yu, Changlong, Wang, Jufang, Han, Huode, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, many researches have considerable attention to the nonlinear q-difference equations boundary value problems as important and useful tool for modeling of different phenomena in various research fields. In this work, we investigate a class of q-difference equations boundary value problems with integral boundary conditions with p-Laplacian on infinite intervals. By applying the Avery-Peterson fixed point theorem in a cone, we establish the existence of three positive solutions for the above boundary value problem. Finally, the main results is illustrated with the aid of an example. Keywords: Avery-Peterson fixed point theorem; boundary value problem; p-Laplacian operator; positive solutions; quantum calculus Mathematics Subject Classification: 39A13, 39A27, 34B40
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021487