Acetylation of Eugenol on Functionalized Mesoporous Aluminosilicates Synthesized from Amazonian Flint Kaolin

The present work was aimed to investigate the catalytic activity of a mesoporous catalyst synthesized from 3-mercaptopropyltrimethoxysilane (MPTS) functionalized Amazonian flint kaolin in the acetylation of eugenol with acetic anhydride. Materials were characterized by thermogravimetry (TGA), N2 ads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-05, Vol.10 (5), p.478
Hauptverfasser: de Nazaré de Oliveira, Alex, Tallyta Leite Lima, Erika, de Aguiar Andrade, Eloisa Helena, Zamian, José Roberto, Filho, Geraldo Narciso da Rocha, Costa, Carlos Emmerson Ferreira da, Helena de Oliveira Pires, Luíza, Luque, Rafael, Nascimento, Luís Adriano Santos do
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work was aimed to investigate the catalytic activity of a mesoporous catalyst synthesized from 3-mercaptopropyltrimethoxysilane (MPTS) functionalized Amazonian flint kaolin in the acetylation of eugenol with acetic anhydride. Materials were characterized by thermogravimetry (TGA), N2 adsorption (BET), X-ray dispersive energy spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and acid-base titration. The results presented proved the efficiency of flint kaolin as an alternative source in the preparation of mesoporous materials, since the material exhibited textural properties (specific surface area of 1071 m2 g−1, pore volume of 1.05 cm3 g−1 and pore diameter of 3.85 nm) and structural properties (d100 = 4.35 nm, a0 = 5.06 nm and Wt = 1.21 nm) within the required and characteristic material standards. The catalyst with the total amount of acidic sites of 4.89 mmol H+ g−1 was efficient in converting 99.9% of eugenol (eugenol to acetic anhydride molar ratio of 1:5, 2% catalyst, temperature and reaction time 80 °C and 40 min reaction). In addition, the reused catalyst could be successfully recycled with 92% conversion activity under identical reaction conditions.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10050478