Maximum likelihood estimation for Gaussian process with nonlinear drift

We investigate the regression model Xt = θG(t) + Bt, where θ is an unknown parameter, G is a known nonrandom function, and B is a centered Gaussian process. We construct the maximum likelihood estimators of the drift parameter θ based on discrete and continuous observations of the process X and prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis (Vilnius, Lithuania) Lithuania), 2018-01, Vol.23 (1), p.120-140
Hauptverfasser: Mishura, Yuliya, Ralchenko, Kostiantyn, Shklyar, Sergiy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the regression model Xt = θG(t) + Bt, where θ is an unknown parameter, G is a known nonrandom function, and B is a centered Gaussian process. We construct the maximum likelihood estimators of the drift parameter θ based on discrete and continuous observations of the process X and prove their strong consistency. The results obtained generalize the paper [Yu. Mishura, K. Ralchenko, S. Shklyar, Maximum likelihood drift estimation for Gaussian process with stationary increments, Austrian J. Stat., 46(3–4): 67–78, 2017] in two directions: the drift may be nonlinear, and the noise may have nonstationary increments. As an example, the model with subfractional Brownian motion is considered.
ISSN:1392-5113
2335-8963
DOI:10.15388/NA.2018.1.9