Maximum likelihood estimation for Gaussian process with nonlinear drift
We investigate the regression model Xt = θG(t) + Bt, where θ is an unknown parameter, G is a known nonrandom function, and B is a centered Gaussian process. We construct the maximum likelihood estimators of the drift parameter θ based on discrete and continuous observations of the process X and prov...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis (Vilnius, Lithuania) Lithuania), 2018-01, Vol.23 (1), p.120-140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the regression model Xt = θG(t) + Bt, where θ is an unknown parameter, G is a known nonrandom function, and B is a centered Gaussian process. We construct the maximum likelihood estimators of the drift parameter θ based on discrete and continuous observations of the process X and prove their strong consistency. The results obtained generalize the paper [Yu. Mishura, K. Ralchenko, S. Shklyar, Maximum likelihood drift estimation for Gaussian process with stationary increments, Austrian J. Stat., 46(3–4): 67–78, 2017] in two directions: the drift may be nonlinear, and the noise may have nonstationary increments. As an example, the model with subfractional Brownian motion is considered. |
---|---|
ISSN: | 1392-5113 2335-8963 |
DOI: | 10.15388/NA.2018.1.9 |