Current Trends of Rice Milling Byproducts for Agricultural Applications and Alternative Food Production Systems

Rice is one of the most economically important foods in the world today. The FAO has reported that managing rice processing and the resulting byproducts into more sustainable applications would be beneficial for a variety of reasons. Rice processing involves several milling stages to produce edible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in sustainable food systems 2019-06, Vol.3
Hauptverfasser: Bodie, Aaron R., Micciche, Andrew C., Atungulu, Griffiths G., Rothrock, Michael J., Ricke, Steven C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice is one of the most economically important foods in the world today. The FAO has reported that managing rice processing and the resulting byproducts into more sustainable applications would be beneficial for a variety of reasons. Rice processing involves several milling stages to produce edible final products. The milling process is the most important step in rice production because it determines the nutritional, cooking, and sensory qualities of crude rice. As crude rice goes through the milling process, byproducts are generated, such as bran that have been shown to exhibit beneficial impacts on human and animal nutrition. While several rice byproducts have applications in agriculture, rice bran has probably received the most attention for its functional properties. Rice bran is a mixture of protein, fat, ash, and crude fiber. However, rice bran's composition is largely dependent on the type of rice and the efficiency of the milling system. Based on studies with mice, rice bran has been shown to elicit prebiotic-like properties by preventing colonization of Salmonella in the gastrointestinal tract. More recently, in vitro incubation studies with chicken cecal contents have demonstrated that certain rice varieties are more inhibitory to Salmonella than others. Moreover, the byproducts of the rice milling process can also provide an economic boost for rice producing nations. In this review, the byproducts of the milling process, how they are utilized, and potential application for rice milling byproducts are discussed.
ISSN:2571-581X
2571-581X
DOI:10.3389/fsufs.2019.00047