Magnetic properties of the layered III-VI diluted magnetic semiconductor Ga1−xFexTe

Magnetic properties of single crystalline Ga1−xFexTe (x = 0.05) have been measured. GaTe and related layered III-VI semiconductors exhibit a rich collection of important properties for THz generation and detection. The magnetization versus field for an x = 0.05 sample deviates from the linear respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-05, Vol.6 (5), p.056222-056222-6
Hauptverfasser: Pekarek, T M, Edwards, P S, Olejniczak, T L, Lampropoulos, C, Miotkowski, I, Ramdas, A K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic properties of single crystalline Ga1−xFexTe (x = 0.05) have been measured. GaTe and related layered III-VI semiconductors exhibit a rich collection of important properties for THz generation and detection. The magnetization versus field for an x = 0.05 sample deviates from the linear response seen previously in Ga1−xMnxSe and Ga1−xMnxS and reaches a maximum of 0.68 emu/g at 2 K in 7 T. The magnetization of Ga1−xFexTe saturates rapidly even at room temperature where the magnetization reaches 50% of saturation in a field of only 0.2 T. In 0.1 T at temperatures between 50 and 400 K, the magnetization drops to a roughly constant 0.22 emu/g. In 0 T, the magnetization drops to zero with no hysteresis present. The data is consistent with Van-Vleck paramagnetism combined with a pronounced crystalline anisotropy, which is similar to that observed for Ga1−xFexSe. Neither the broad thermal hysteresis observed from 100-300 K in In1−xMnxSe nor the spin-glass behavior observed around 10.9 K in Ga1−xMnxS are observed in Ga1−xFexTe. Single crystal x-ray diffraction data yield a rhombohedral space group bearing hexagonal axes, namely R3c. The unit cell dimensions were a = 5.01 Å, b = 5.01 Å, and c = 17.02 Å, with α = 90°, β = 90°, and γ = 120° giving a unit cell volume of 369 Å3.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4945335