All‐Optical Switching of Structural Color with a Fabry–Pérot Cavity
Fine tuning the optical responses of thin‐film devices is highly attractive for emerging applications, such as optical memories, solar cells, nanophotonics, and photodetectors. Even though thin‐film technology is well established, dynamically switching the optical responses of thin films after fabri...
Gespeichert in:
Veröffentlicht in: | Advanced Photonics Research 2023-11, Vol.4 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fine tuning the optical responses of thin‐film devices is highly attractive for emerging applications, such as optical memories, solar cells, nanophotonics, and photodetectors. Even though thin‐film technology is well established, dynamically switching the optical responses of thin films after fabrication remains challenging because of passive materials and device structures. This work demonstrates an approach for all‐optical switching of structural colors excited by a Fabry–Pérot (FP) cavity inside a metal–dielectric–metal (MDM) thin‐film stack. A low‐loss phase‐change material (PCM), that is, antimony trisulfide (Sb2S3), which is embedded in the stack, enables efficient FP cavity resonance in the visible spectrum. 1) Color reflectivity of >60%; 2) multistructural colors using a single MDM cavity; 3) a wide dynamic range of colors of up to ≈220 nm; and 4) a gamut coverage of more than 80% of standard RGB (sRGB) are achieved. The all‐optical switching is realized via the crystallization and reamorphization of Sb2S3 using continuous‐wave and pulsed lasers, respectively. The findings provide a framework for the cost‐effective realization of dynamically responsive thin‐film‐based nanophotonic devices.
All‐optical switching of structural colors excited by a Fabry–Pérot cavity inside a metal–dielectric–metal thin film stack is demonstrated. A reflectivity of >60%, a dynamic wavelength range of ≈220 nm, and a gamut coverage of >80% of standard RGB has been realized via the crystallization and re‐amorphization of a low loss phase change material, that is, antimony trisulfide (Sb2S3). |
---|---|
ISSN: | 2699-9293 2699-9293 |
DOI: | 10.1002/adpr.202300209 |