History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2
The discovery of two-dimensional magnets has initiated a new field of research, exploring both fundamental low-dimensional magnetism, and prospective spintronic applications. Recently, observations of magnetic skyrmions in the 2D ferromagnet Fe 3 GeTe 2 (FGT) have been reported, introducing further...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-05, Vol.13 (1), p.3035-3035, Article 3035 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discovery of two-dimensional magnets has initiated a new field of research, exploring both fundamental low-dimensional magnetism, and prospective spintronic applications. Recently, observations of magnetic skyrmions in the 2D ferromagnet Fe
3
GeTe
2
(FGT) have been reported, introducing further application possibilities. However, controlling the exhibited magnetic state requires systematic knowledge of the history-dependence of the spin textures, which remains largely unexplored in 2D magnets. In this work, we utilise real-space imaging, and complementary simulations, to determine and explain the thickness-dependent magnetic phase diagrams of an exfoliated FGT flake, revealing a complex, history-dependent emergence of the uniformly magnetised, stripe domain and skyrmion states. The results show that the interplay of the dominant dipolar interaction and strongly temperature dependent out-of-plane anisotropy energy terms enables the selective stabilisation of all three states at zero field, and at a single temperature, while the Dzyaloshinksii-Moriya interaction must be present to realise the observed Néel-type domain walls. The findings open perspectives for 2D devices incorporating topological spin textures.
Fe
3
GeTe
2
, known as FGT, is a van der Waals magnetic material that was recently shown to host magnetic skyrmions. Here, Birch et al using both X-ray and electron microscopy to study the stability of skyrmions in FGT, revealing how the sample history can influence skyrmion formation |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-30740-7 |