Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas

Preoperative diagnosis of filum terminale ependymomas (FTEs) versus schwannomas is difficult but essential for surgical planning and prognostic assessment. With the advancement of deep-learning approaches based on convolutional neural networks (CNNs), the aim of this study was to determine whether C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2024-03, Vol.24 (1), p.350-350, Article 350
Hauptverfasser: Gu, Zhaowen, Dai, Wenli, Chen, Jiarui, Jiang, Qixuan, Lin, Weiwei, Wang, Qiangwei, Chen, Jingyin, Gu, Chi, Li, Jia, Ying, Guangyu, Zhu, Yongjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preoperative diagnosis of filum terminale ependymomas (FTEs) versus schwannomas is difficult but essential for surgical planning and prognostic assessment. With the advancement of deep-learning approaches based on convolutional neural networks (CNNs), the aim of this study was to determine whether CNN-based interpretation of magnetic resonance (MR) images of these two tumours could be achieved. Contrast-enhanced MRI data from 50 patients with primary FTE and 50 schwannomas in the lumbosacral spinal canal were retrospectively collected and used as training and internal validation datasets. The diagnostic accuracy of MRI was determined by consistency with postoperative histopathological examination. T1-weighted (T1-WI), T2-weighted (T2-WI) and contrast-enhanced T1-weighted (CE-T1) MR images of the sagittal plane containing the tumour mass were selected for analysis. For each sequence, patient MRI data were randomly allocated to 5 groups that further underwent fivefold cross-validation to evaluate the diagnostic efficacy of the CNN models. An additional 34 pairs of cases were used as an external test dataset to validate the CNN classifiers. After comparing multiple backbone CNN models, we developed a diagnostic system using Inception-v3. In the external test dataset, the per-examination combined sensitivities were 0.78 (0.71-0.84, 95% CI) based on T1-weighted images, 0.79 (0.72-0.84, 95% CI) for T2-weighted images, 0.88 (0.83-0.92, 95% CI) for CE-T1 images, and 0.88 (0.83-0.92, 95% CI) for all weighted images. The combined specificities were 0.72 based on T1-WI (0.66-0.78, 95% CI), 0.84 (0.78-0.89, 95% CI) based on T2-WI, 0.74 (0.67-0.80, 95% CI) for CE-T1, and 0.81 (0.76-0.86, 95% CI) for all weighted images. After all three MRI modalities were merged, the receiver operating characteristic (ROC) curve was calculated, and the area under the curve (AUC) was 0.93, with an accuracy of 0.87. CNN based MRI analysis has the potential to accurately differentiate ependymomas from schwannomas in the lumbar segment.
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-024-12023-0