Square Sum And Square Difference Labelings Of Semitotal-block Graph For Some Class Of Graphs
A graph G is said to be square sum and square difference labeling, if there exists a bijection f from V (G) to {1, 2, 3, ..., (p − 1)} which induces the injective function f ∗ from E(G) to N, defined by f ∗(uv) = f(u)2 + f(v)2 and f ∗(uv) = f(u)2 − f(v)2 respectively, for each uv ∈ E(G) and the resu...
Gespeichert in:
Veröffentlicht in: | Ratio mathematica 2023-06, Vol.47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G is said to be square sum and square difference labeling, if there exists a bijection f from V (G) to {1, 2, 3, ..., (p − 1)} which induces the injective function f ∗ from E(G) to N, defined by f ∗(uv) = f(u)2 + f(v)2 and f ∗(uv) = f(u)2 − f(v)2 respectively, for each uv ∈ E(G) and the resulting edges are distinctly labeled. G is said to be square sum and square difference graph, if it asdmits a square sum and square difference labeling respectively. The present work investigates, square sum and square difference labeling of semitotal-block graph for some class of graphs which are proved using number theory concept. |
---|---|
ISSN: | 1592-7415 2282-8214 |
DOI: | 10.23755/rm.v47i0.804 |