Effect of Ultrafine Bubbles on Various Stocking Density of Striped Catfish Larviculture in Recirculating Aquaculture System
The effects of ultrafine bubbles on the high stock density of striped catfish larvae in a recirculating aquaculture system (RAS) are described in this research (UFBs-RAS). In this study, the various stock densities of striped catfish were investigated regarding the effect of oxygen saturation on the...
Gespeichert in:
Veröffentlicht in: | Fishes 2022-07, Vol.7 (4), p.190 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of ultrafine bubbles on the high stock density of striped catfish larvae in a recirculating aquaculture system (RAS) are described in this research (UFBs-RAS). In this study, the various stock densities of striped catfish were investigated regarding the effect of oxygen saturation on the yolk sac absorption rate, length growth rate, and yolk sac utilization efficiency at the endogenous stage. The survival rate, the specific growth rate (weight, length, and biomass), and the gross feeding efficiency were examined at an exogenous stage. The results showed that the ultrafine bubbles generator in the recirculating aquaculture system (UFBs-RAS) provide the dissolved oxygen concentration up to 128.97%sat. The oxygen saturated state in FBs-RAS at the stock density 100 fish/L (D100) provided high yolk sac utilization efficiency in the endogenous stage and high survival, specific growth rate, and gross feeding efficiency in the exogenous stage. It was emphasized that the performance was possible due to surplus oxygen up to 1.58 mg/L at the stock density of 100 fish/L and accomplished minimum ammonia (NH3-N) content much lower than the limit (0.12 µg/L). Thus, the striped catfish larviculture with UFBs-RAS-provided oxygen balance subsequently improved the production rate significantly with cost-effective production. |
---|---|
ISSN: | 2410-3888 2410-3888 |
DOI: | 10.3390/fishes7040190 |