Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification
Hydrogen is increasingly being discussed as clean energy for the goal of net-zero carbon emissions, applied in the proton-exchange-membrane fuel cells (PEMFC). The preferential oxidation of CO (PROX) in hydrogen is a promising solution for hydrogen purification to avoid catalysts from being poisoned...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-11, Vol.13 (1), p.6798-6798, Article 6798 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen is increasingly being discussed as clean energy for the goal of net-zero carbon emissions, applied in the proton-exchange-membrane fuel cells (PEMFC). The preferential oxidation of CO (PROX) in hydrogen is a promising solution for hydrogen purification to avoid catalysts from being poisoned by the trace amount of CO in hydrogen-rich fuel gas. Here, we report the fabrication of a novel bimetallic Pt-Fe catalyst with ultralow metal loading, in which fully-exposed Pt clusters bonded with neighbor atomically dispersed Fe atoms on the defective graphene surface. The fully-exposed PtFe cluster catalyst could achieve complete elimination of CO through PROX reaction and almost 100% CO selectivity, while maintaining good stability for a long period. It has the mass-specific activity of 6.19 (mol
CO
)*(g
Pt
)
−1
*h
−1
at room temperature, which surpasses those reported in literatures. The exhaustive experimental results and theoretical calculations reveal that the construction of fully-exposed bimetallic Pt-Fe cluster catalysts with maximized atomic efficiency and abundant interfacial sites could facilitate oxygen activation on unsaturated Fe species and CO adsorption on electron-rich Pt clusters to hence the probability of CO oxidation, leading to excellent reactivity in practical applications.
The preferential oxidation of CO (PROX) in hydrogen is a promising solution for hydrogen purification. Here the authors report a novel bimetallic Pt-Fe catalyst with ultralow metal loading which delivers excellent catalytic activity and selectivity in PROX, while maintains good stability for a long period. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-34674-y |