Hybrid Machine-Learning Model for Accurate Prediction of Filtration Volume in Water-Based Drilling Fluids

Accurately predicting the filtration volume (FV) in drilling fluid (DF) is crucial for avoiding drilling problems such as a stuck pipe and minimizing DF impacts on formations during drilling. Traditional FV measurement relies on human-centric experimental evaluation, which is time-consuming. Recentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-10, Vol.14 (19), p.9035
Hauptverfasser: Davoodi, Shadfar, Al-Rubaii, Mohammed, Wood, David A., Al-Shargabi, Mohammed, Mehrad, Mohammad, Rukavishnikov, Valeriy S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurately predicting the filtration volume (FV) in drilling fluid (DF) is crucial for avoiding drilling problems such as a stuck pipe and minimizing DF impacts on formations during drilling. Traditional FV measurement relies on human-centric experimental evaluation, which is time-consuming. Recently, machine learning (ML) proved itself as a promising approach for FV prediction. However, existing ML methods require time-consuming input variables, hindering the semi-real-time monitoring of the FV. Therefore, employing radial basis function neural network (RBFNN) and multilayer extreme learning machine (MELM) algorithms integrated with the growth optimizer (GO), predictive hybrid ML (HML) models are developed to reliably predict the FV using only two easy-to-measure input variables: drilling fluid density (FD) and Marsh funnel viscosity (MFV). A 1260-record dataset from seventeen wells drilled in two oil and gas fields (Iran) was used to evaluate the models. Results showed the superior performance of the RBFNN-GO model, achieving a root-mean-square error (RMSE) of 0.6396 mL. Overfitting index (OFI), score, dependency, and Shapley additive explanations (SHAP) analysis confirmed the superior FV prediction performance of the RBFNN-GO model. In addition, the low RMSE (0.3227 mL) of the RBFNN-NGO model on unseen data from a different well within the studied fields confirmed the strong generalizability of this rapid and novel FV prediction method.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14199035