Mathematical Modeling of Changes in the Dispersed Composition of Solid Phase Particles in Technological Apparatuses of Periodic and Continuous Action

This article presents a methodological approach to modeling the processes of changing the dispersed composition of solid phase particles, such as granulation, crystallization, pyrolysis, and others. Granulation is considered as a complex process consisting of simpler (elementary) processes such as c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-03, Vol.10 (6), p.994
Hauptverfasser: Flisyuk, Oleg M., Martsulevich, Nicolay A., Meshalkin, Valery P., Garabadzhiu, Alexandr V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a methodological approach to modeling the processes of changing the dispersed composition of solid phase particles, such as granulation, crystallization, pyrolysis, and others. Granulation is considered as a complex process consisting of simpler (elementary) processes such as continuous particle growth, agglomeration, crushing and abrasion. All these elementary processes, which are also complex in themselves, usually participate in the formation of the dispersed composition of particles and proceed simultaneously with the predominance of one process or another, depending on the method of its organization and the physicochemical properties of substances. A quantitative description of the evolution of the dispersed composition of the solid phase in technological processes in which the particle size does not remain constant is proposed. Considering the stochastic nature of elementary mass transfer events in individual particles, the methods of the theory of probability are applied. The analysis of the change in the dispersed composition is based on the balanced equation of the particle mass distribution function. The equation accounts for all possible physical mechanisms that effect changes in particle size during chemical and technological processes. Examples of solutions to this equation for specific processes of practical importance are provided. The obtained analytical solutions are of independent interest and are in good agreement with the experimental data, which indicates the adequacy of the proposed approach. These solutions can also be used to analyze similar processes. The effectiveness has been confirmed during the analysis and calculation of the processes of granulation of various solutions and disposal of oil-containing waste to obtain a granular mineral additive.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060994