K-Modified Co–Mn–Al Mixed Oxide—Effect of Calcination Temperature on N2O Conversion in the Presence of H2O and NOx

The effect of calcination temperature (500–700 °C) on physico-chemical properties and catalytic activity of 2 wt. % K/Co-Mn-Al mixed oxide for N2O decomposition was investigated. Catalysts were characterized by inductively coupled plasma spectroscopy (ICP), X-ray powder diffraction (XRD), temperatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-10, Vol.10 (10), p.1134
Hauptverfasser: Karásková, Kateřina, Pacultová, Kateřina, Jirátová, Květuše, Fridrichová, Dagmar, Koštejn, Martin, Obalová, Lucie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of calcination temperature (500–700 °C) on physico-chemical properties and catalytic activity of 2 wt. % K/Co-Mn-Al mixed oxide for N2O decomposition was investigated. Catalysts were characterized by inductively coupled plasma spectroscopy (ICP), X-ray powder diffraction (XRD), temperature-programmed reduction by hydrogen (TPR-H2), temperature-programmed desorption of CO2 (TPD-CO2), temperature-programmed desorption of NO (TPD-NO), X-ray photoelectron spectrometry (XPS) and N2 physisorption. It was found that the increase in calcination temperature caused gradual crystallization of Co-Mn-Al mixed oxide, which manifested itself in the decrease in Co2+/Co3+ and Mn3+/Mn4+ surface molar ratio, the increase in mean crystallite size leading to lowering of specific surface area and poorer reducibility. Higher surface K content normalized per unit surface led to the increase in surface basicity and adsorbed NO per unit surface. The effect of calcination temperature on catalytic activity was significant mainly in the presence of NOx, as the optimal calcination temperature of 500 °C is necessary to ensure sufficient low surface basicity, leading to the highest catalytic activity. Observed NO inhibition was caused by the formation of surface mononitrosyl species bonded to tetrahedral metal sites or nitrite species, which are stable at reaction temperatures up to 450 °C and block active sites for N2O decomposition.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10101134