An unethical optimization principle
If an artificial intelligence aims to maximize risk-adjusted return, then under mild conditions it is disproportionately likely to pick an unethical strategy unless the objective function allows sufficiently for this risk. Even if the proportion η of available unethical strategies is small, the prob...
Gespeichert in:
Veröffentlicht in: | Royal Society open science 2020-07, Vol.7 (7), p.200462-200462 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If an artificial intelligence aims to maximize risk-adjusted return, then under mild conditions it is disproportionately likely to pick an unethical strategy unless the objective function allows sufficiently for this risk. Even if the proportion
η
of available unethical strategies is small, the probability
p
U
of picking an unethical strategy can become large; indeed, unless returns are fat-tailed
p
U
tends to unity as the strategy space becomes large. We define an unethical odds ratio,
Υ
(capital upsilon), that allows us to calculate
p
U
from
η
, and we derive a simple formula for the limit of
Υ
as the strategy space becomes large. We discuss the estimation of
Υ
and
p
U
in finite cases and how to deal with infinite strategy spaces. We show how the principle can be used to help detect unethical strategies and to estimate
η
. Finally we sketch some policy implications of this work. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.200462 |