An unethical optimization principle

If an artificial intelligence aims to maximize risk-adjusted return, then under mild conditions it is disproportionately likely to pick an unethical strategy unless the objective function allows sufficiently for this risk. Even if the proportion η of available unethical strategies is small, the prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2020-07, Vol.7 (7), p.200462-200462
Hauptverfasser: Beale, Nicholas, Battey, Heather, Davison, Anthony C., MacKay, Robert S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If an artificial intelligence aims to maximize risk-adjusted return, then under mild conditions it is disproportionately likely to pick an unethical strategy unless the objective function allows sufficiently for this risk. Even if the proportion η of available unethical strategies is small, the probability p U of picking an unethical strategy can become large; indeed, unless returns are fat-tailed p U tends to unity as the strategy space becomes large. We define an unethical odds ratio, Υ (capital upsilon), that allows us to calculate p U from η , and we derive a simple formula for the limit of Υ as the strategy space becomes large. We discuss the estimation of Υ and p U in finite cases and how to deal with infinite strategy spaces. We show how the principle can be used to help detect unethical strategies and to estimate η . Finally we sketch some policy implications of this work.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.200462