Exploring ground states of Fermi-Hubbard model on honeycomb lattices with counterdiabaticity

Exploring the ground state properties of many-body quantum systems conventionally involves adiabatic processes, alongside exact diagonalization, in the context of quantum annealing or adiabatic quantum computation. Shortcuts to adiabaticity by counter-diabatic driving serve to accelerate these proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum materials 2024-11, Vol.9 (1), p.87-10, Article 87
Hauptverfasser: Tang, Jialiang, Xu, Ruoqian, Ding, Yongcheng, Xu, Xusheng, Ban, Yue, Yung, Man-Hong, Pérez-Obiol, Axel, Platero, Gloria, Chen, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exploring the ground state properties of many-body quantum systems conventionally involves adiabatic processes, alongside exact diagonalization, in the context of quantum annealing or adiabatic quantum computation. Shortcuts to adiabaticity by counter-diabatic driving serve to accelerate these processes by suppressing energy excitations. Motivated by this, we develop variational quantum algorithms incorporating the auxiliary counter-diabatic interactions, comparing them with digitized adiabatic algorithms. These algorithms are then implemented on gate-based quantum circuits to explore the ground states of the Fermi-Hubbard model on honeycomb lattices, utilizing systems with up to 26 qubits. The comparison reveals that the counter-diabatic inspired ansatz is superior to traditional Hamiltonian variational ansatz. Furthermore, the number and duration of Trotter steps are analyzed to understand and mitigate errors. Given the model’s relevance to materials in condensed matter, our study paves the way for using variational quantum algorithms with counterdiabaticity to explore quantum materials in the noisy intermediate-scale quantum era.
ISSN:2397-4648
2397-4648
DOI:10.1038/s41535-024-00697-5