A Blind Signal Samples Detection Algorithm for Accurate Primary User Traffic Estimation

The energy detection process for enabling opportunistic spectrum access in dynamic primary user (PU) scenarios, where PU changes state from active to inactive at random time instances, requires the estimation of several parameters ranging from noise variance and signal-to-noise ratio (SNR) to instan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-07, Vol.20 (15), p.4136
Hauptverfasser: Nikonowicz, Jakub, Mahmood, Aamir, Gidlund, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The energy detection process for enabling opportunistic spectrum access in dynamic primary user (PU) scenarios, where PU changes state from active to inactive at random time instances, requires the estimation of several parameters ranging from noise variance and signal-to-noise ratio (SNR) to instantaneous and average PU activity. A prerequisite to parameter estimation is an accurate extraction of the signal and noise samples in a received signal time frame. In this paper, we propose a low-complexity and accurate signal samples detection algorithm as compared to well-known methods, which is also blind to the PU activity distribution. The proposed algorithm is analyzed in a semi-experimental simulation setup for its accuracy and time complexity in recognizing signal and noise samples, and its use in channel occupancy estimation, under varying occupancy and SNR of the PU signal. The results confirm its suitability for acquiring the necessary information on the dynamic behavior of PU, which is otherwise assumed to be known in the literature.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20154136