Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction

Oxidative stress plays an important role in the pathogenesis of many disease states. In the heart, reactive oxygen species are linked with cardiac ischemia/reperfusion injury, hypertrophy, and heart failure. While this correlation between ROS and cardiac pathology has been observed in multiple model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-10, Vol.9 (1), p.4044-10, Article 4044
Hauptverfasser: Steinhorn, Benjamin, Sorrentino, Andrea, Badole, Sachin, Bogdanova, Yulia, Belousov, Vsevolod, Michel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidative stress plays an important role in the pathogenesis of many disease states. In the heart, reactive oxygen species are linked with cardiac ischemia/reperfusion injury, hypertrophy, and heart failure. While this correlation between ROS and cardiac pathology has been observed in multiple models of heart failure, the independent role of hydrogen peroxide (H 2 O 2 ) in vitro and in vivo is unclear, owing to a lack of tools for precise manipulation of intracellular redox state. Here we apply a chemogenetic system based on a yeast D-amino acid oxidase to show that chronic generation of H 2 O 2 in the heart induces a dilated cardiomyopathy with significant systolic dysfunction. We anticipate that chemogenetic approaches will enable future studies of in vivo H 2 O 2 signaling not only in the heart, but also in the many other organ systems where the relationship between redox events and physiology remains unclear. Excessive production of reactive oxygen species (ROS) is associated with cardiac dysfunction, but the causal role of ROS remains poorly understood. Here the authors use an in vivo chemogenetic approach to develop a heart failure model in which generation of hydrogen peroxide in the heart leads to systolic heart failure without fibrotic remodeling.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-06533-2