On the double bondage number of graphs products
A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]\cap D|\geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $\gamma_d(G)$. The minimum number of edges $E'$ such that $\gamma_d(G\setminus E)>\gamma_d(G)$ is called...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2019-03, Vol.8 (1), p.51-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]\cap D|\geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $\gamma_d(G)$. The minimum number of edges $E'$ such that $\gamma_d(G\setminus E)>\gamma_d(G)$ is called the double bondage number of $G$ and is denoted by $b_d(G)$. This paper determines that $b_d(G\vee H)$ and exact values of $b(P_n\times P_2)$, and generalized corona product of graphs. |
---|---|
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2018.114111.1605 |