Synthesis of Small Ce3+-Er3+-Yb3+ Tri-Doped BaLuF5 Active-Core-Active-Shell-Active-Shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm

Small fluoride nanoparticles (NPs) with strong down-conversion (DC) luminescence at 1.5 μm are quite desirable for optical fiber communication systems. Nevertheless, a problem exists regarding how to synthesize small fluoride NPs with strong DC emission at 1.5 μm. Herein, we propose an approach to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-08, Vol.8 (8), p.615
Hauptverfasser: Zhang, Yongling, Shi, Yudi, Qin, Zhengkun, Song, Mingxing, Qin, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small fluoride nanoparticles (NPs) with strong down-conversion (DC) luminescence at 1.5 μm are quite desirable for optical fiber communication systems. Nevertheless, a problem exists regarding how to synthesize small fluoride NPs with strong DC emission at 1.5 μm. Herein, we propose an approach to improve 1.5 μm emission of BaLuF5:Yb3+,Er3+ NPs by way of combining doping Ce3+ ions and coating multiple BaLuF5: Yb3+ active-shells. We prepared the BaLuF5:18%Yb3+,2%Er3+,2%Ce3+ NPs through a high-boiling solvent method. The effect of Ce3+ concentration on the DC luminescence was systematically investigated in the BaLuF5:Yb3+,Er3+ NPs. Under a 980 nm laser excitation, the intensities of 1.53 μm emission of BaLuF5:18%Yb3+,2%Er3+,2%Ce3+ NPs was enhanced by 2.6 times comparing to that of BaLuF5:18%Yb3+,2%Er3+ NPs since the energy transfer between Er3+ and Ce3+ ions: Er3+:4I11/2 (Er3+) + 2F5/2 (Ce3+) → 4I13/2 (Er3+) + 2F7/2 (Ce3+). Then, we synthesized BaLuF5:18%Yb3+,2%Er3+,2%Ce3+@BaLuF5:5%Yb3+@BaLuF5:5%Yb3+ core-active-shell-active-shell NPs via a layer-by-layer strategy. After coating two BaLuF5:Yb3+ active-shell around BaLuF5:Yb3+,Er3+,Ce3+ NPs, the intensities of the 1.53 μm emission was enhanced by 44 times compared to that of BaLuF5:Yb3+,Er3+ core NPs, since the active-shells could be used to not only suppress surface quenching but also to transfer the pump light to the core region efficiently through Yb3+ ions inside the active-shells.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano8080615