Generalized Jordan N-Derivations of Unital Algebras with Idempotents
Let A be a unital algebra with idempotent e over a 2-torsionfree unital commutative ring ℛ and S:A⟶A be an arbitrary generalized Jordan n-derivation associated with a Jordan n-derivation J. We show that, under mild conditions, every generalized Jordan n-derivation S:A⟶A is of the form Sx=λx+Jx in th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a unital algebra with idempotent e over a 2-torsionfree unital commutative ring ℛ and S:A⟶A be an arbitrary generalized Jordan n-derivation associated with a Jordan n-derivation J. We show that, under mild conditions, every generalized Jordan n-derivation S:A⟶A is of the form Sx=λx+Jx in the current work. As an application, we give a description of generalized Jordan derivations for the condition n=2 on classical examples of unital algebras with idempotents: triangular algebras, matrix algebras, nest algebras, and algebras of all bounded linear operators, which generalize some known results. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2021/9997646 |