MDLab: AI frameworks for carbon capture and battery materials

There is a growing urgency to discover better materials that capture CO 2 from air and improve battery performance. An important step is to search large databases of materials properties to find examples that resemble known carbon capture agents or electrolytes and then test them for effectiveness....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in environmental science 2023-08, Vol.11
Hauptverfasser: Elmegreen, Bruce, Hamann, Hendrik F., Wunsch, Benjamin, Van Kessel, Theodore, Luan, Binquan, Elengikal, Tonia, Steiner, Mathias, Neumann Barros Ferreira, Rodrigo, Ohta, Ricardo Luis, Oliveira, Felipe Lopes, McDonagh, James L., O’Conchuir, Breanndan, Zavitsanou, Stamatia, Harrison, Alexander, Cipcigan, Flaviu, de Mel, Geeth, La, Young-Hye, Sharma, Vidushi, Zubarev, Dmitry Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a growing urgency to discover better materials that capture CO 2 from air and improve battery performance. An important step is to search large databases of materials properties to find examples that resemble known carbon capture agents or electrolytes and then test them for effectiveness. This paper describes novel computational tools for accelerated discovery of solvents, nano-porous materials, and electrolytes. These tools have produced interesting results so far, such as the identification of a relatively isolated location in amine configuration space for the solvents with known carbon capture use, and the demonstration of an end-to-end simulation and process model for carbon capture in MOFs.
ISSN:2296-665X
2296-665X
DOI:10.3389/fenvs.2023.1204690