Sudakov suppression of the Balitsky-Kovchegov kernel

A bstract To sum high-energy leading logarithms in a consistent way, one has to impose the strong ordering in both projectile rapidity and dense target rapidity simultaneously, which results in a kinematically improved Balitsky-Kovchegov (BK) equation. We find that beyond this strong ordering region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2019-11, Vol.2019 (11), p.1-17, Article 177
Hauptverfasser: Zheng, Du-xin, Zhou, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract To sum high-energy leading logarithms in a consistent way, one has to impose the strong ordering in both projectile rapidity and dense target rapidity simultaneously, which results in a kinematically improved Balitsky-Kovchegov (BK) equation. We find that beyond this strong ordering region, the important sub-leading double logarithms arise at high order due to the incomplete cancellation between real corrections and virtual corrections in a t-channel calculation. Based on this observation, we further argue that these double logarithms are the Sudakov type ones, and thus can be resummed into an exponential leading to a Sudakov suppressed BK equation.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2019)177