R-Matrix Calculation of Electron Collision with the BeO+ Molecular Ion
We report here an R-matrix study of electron collision with the BeO+ molecular ion in its X 2Π ground state and at a single bond length, namely its equilibrium Re=2.7023 a0. Firstly, a good quality configuration interaction calculation is performed for the BeO+ ground and excited states. We then per...
Gespeichert in:
Veröffentlicht in: | Atoms 2024-01, Vol.12 (1), p.2 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report here an R-matrix study of electron collision with the BeO+ molecular ion in its X 2Π ground state and at a single bond length, namely its equilibrium Re=2.7023 a0. Firstly, a good quality configuration interaction calculation is performed for the BeO+ ground and excited states. We then perform scattering calculations using the R-matrix method to yield the cross-section for electronic excitation to several of its excited states. The electron impact dissociation of BeO+ through the two lowest dissociation channels, namely the Be+(2Sg) + O(3Pg) and Be+(2Sg) + O(1Dg) dissociation channels, is estimated using the electronic excitation cross-sections. Rotational excitation cross-sections are provided for the j(=0)→j′(=1,2,3) rotational transitions. Our calculations also yield e + BeO+ neutral Feshbach resonances and their widths which we present systematically categorized by their symmetry and quantum defects, and BeO-bound Rydberg states at the BeO+ equilibrium. The full potential energy curves for the resonant states, their widths and the bound Rydberg states, whose details we propose to give in a subsequent work, can be the starting point of other collision calculations. |
---|---|
ISSN: | 2218-2004 2218-2004 |
DOI: | 10.3390/atoms12010002 |